The Nuclear Magnetic Resonance of CCCC RNA Reveals a Right-Handed Helix, and Revised Parameters for AMBER Force Field Torsions Improve Structural Predictions from Molecular Dynamics

نویسندگان

  • Jason D. Tubbs
  • David E. Condon
  • Scott D. Kennedy
  • Melanie Hauser
  • Philip C. Bevilacqua
  • Douglas H. Turner
چکیده

The sequence dependence of RNA energetics is important for predicting RNA structure. Hairpins with C(n) loops are consistently less stable than hairpins with other loops, which suggests the structure of C(n) regions could be unusual in the "unfolded" state. For example, previous nuclear magnetic resonance (NMR) evidence suggested that polycytidylic acid forms a left-handed helix. In this study, UV melting experiments show that the hairpin formed by r(5'GGACCCCCGUCC) is less stable than r(5'GGACUUUUGUCC). NMR spectra for single-stranded C(4) oligonucleotide, mimicking the unfolded hairpin loop, are consistent with a right-handed A-form-like helix. Comparisons between NMR spectra and molecular dynamics (MD) simulations suggest that recent reparametrizations, parm99χ_YIL and parm99TOR, of the AMBER parm99 force field improve the agreement between structural features for C(4) determined by NMR and predicted by MD. Evidently, the force field revisions to parm99 improve the modeling of RNA energetics and therefore structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction to NMR of CCCC RNA Reveals a Right-Handed Helix and Revised Parameters for AMBER Force Field Torsions Improve Structural Predictions from Molecular Dynamics

The labeling of Figure 5A has been corrected. The trajectory for δ4 has been replaced with the correct trajectory (the corrected Figure S5 in the original Supporting Information appears below). The trajectory for δ1 has been replaced with the correct trajectory (the corrected Figure S10 in the original Supporting Information appears below). Funding for the research was missing and should have b...

متن کامل

Reparameterization of RNA χ Torsion Parameters for the AMBER Force Field and Comparison to NMR Spectra for Cytidine and Uridine

A reparameterization of the torsional parameters for the glycosidic dihedral angle, chi, for the AMBER99 force field in RNA nucleosides is used to provide a modified force field, AMBER99chi. Molecular dynamics simulations of cytidine, uridine, adenosine, and guanosine in aqueous solution using the AMBER99 and AMBER99chi force fields are compared with NMR results. For each nucleoside and force f...

متن کامل

Benchmarking AMBER Force Fields for RNA: Comparisons to NMR Spectra for Single-Stranded r(GACC) Are Improved by Revised χ Torsions

Accurately modeling unpaired regions of RNA is important for predicting structure, dynamics, and thermodynamics of folded RNA. Comparisons between NMR data and molecular dynamics simulations provide a test of force fields used for modeling. Here, NMR spectroscopy, including NOESY, (1)H-(31)P HETCOR, DQF-COSY, and TOCSY, was used to determine conformational preferences for single-stranded GACC R...

متن کامل

Revised RNA Dihedral Parameters for the Amber Force Field Improve RNA Molecular Dynamics

The backbone dihedral parameters of the Amber RNA force field were improved by fitting using multiple linear regression to potential energies determined by quantum chemistry calculations. Five backbone and four glycosidic dihedral parameters were fit simultaneously to reproduce the potential energies determined by a high-level density functional theory calculation (B97D3 functional with the AUG...

متن کامل

Optimization of an AMBER Force Field for the Artificial Nucleic Acid, LNA, and Benchmarking with NMR of L(CAAU)

Locked Nucleic Acids (LNAs) are RNA analogues with an O2'-C4' methylene bridge which locks the sugar into a C3'-endo conformation. This enhances hybridization to DNA and RNA, making LNAs useful in microarrays and potential therapeutics. Here, the LNA, L(CAAU), provides a simplified benchmark for testing the ability of molecular dynamics (MD) to approximate nucleic acid properties. LNA χ torsion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2013